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Several numerical methods for treating stochastic differential equations are con- 
sidered. Both the convergence in the mean square limit and the convergence of 
the moments is discussed and the generation of appropriate random numbers is 
treated. The necessity of simulations at various time steps with an extrapolation 
to time step zero is emphasized and demonstrated by a simple example. 
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1. I N T R O D U C T I O N  

Dynamical  quantities in complex physical systems are often governed by a 
set of stochastic differential equations, (1 4) which in the I to interpretat ion 
may be written as 

2 i = f / ( x )  + ~ ( x )  r/t(t ) (1.1) 

Here f i ( x )  denotes the drift term and aU(x) the diffusion term, and the 
white noise r/j(t) simulates the influence of the fast variables on the 
dynamical  quantities x i. According to the white noise properties, we have 

(~/i(t)) = 0  (1.2a) 

(~7~(t) tlj(t ')  ) = 6 o. 6 ( t -  t ')  (1.2b) 

and all higher correlat ion functions are determined by the Gaussian 
character  of the white noise. 

Al though the numerical  integration of deterministic differential 
equations is a relatively clear and well-known problem, the analogous  case 
for stochastic differential equat ions is more  complicated and therefore has 
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often led to some confusion and misunderstanding. There are already 
several papers in the mathematical literature on the numerical treatment of 
equations (1.1),~5 12) but all of them tell little about realistic experience with 
the proposed algorithms, so that they are not of great help for the physicist 
interested in a clear and efficient method. The experience related in this 
paper has emerged from the study of stochastic equations in an applied 
physical science, the rheology of polymeric fluids, and the authors hope to 
have formulated a concise recipe for the physicist who wants to have a tool 
for treating stochastic equations. 

In Section 2 we discuss the expansion of x~(t + h) in the time step h; in 
Section 3 the convergence in the mean square sense and the convergence of 
the moments are introduced. In Section 4 various methods are studied and 
in Section 5 the practical calculation is presented with the extrapolation to 
h ~ 0 .  

2. THE EXPANSION IN THE T I M E  STEP h 

Since for brevity we will discuss only systems where drift and diffusion 
terms do not explicitly depend on time, we may assume that xi(t) is known 
at t = 0  and that we are interested in xi(h) for h >0.  Integration of (1.1) 
leads to 

x~(h)=x'(O)+ f~ ds ff(x(s))+ f~ dsaU(x(s))rlj(S ) (2.1) 

We expand drift and diffusion terms in (2.1) about s = 0  by using (2.1) 
again, in order to get (with f k  = Of/c?x~) 

xi(h )= xi(O ) + ~ ds fi (xk(O ) + ~ du fk(x(u) ) + ~ du ak'(x(u) ) rl,(u)) 

+ I2 ds aU [xk(O) + f~du f~(x(u)) + f~ du ak'(x(u)) rl,(u)] rl~(s) 

= xi(O) + hfi(x(O)) + ag(x(O)) ds rlj(S) 

+ fig(x(O ) ) f: ds [ f~ du fk(x(u) ) + fodU ag'(x(u) ) q,(u)] 

+ l f ,~(x(O)) ~ ds [f~ du G~m(x(u)) rtm(u)][f~ du ~'n(x(u)) ~n(u)] 

+ a~,~(x(O ) ) j: ds [ f~ du f~(x(u) ) + f~du ak'(x(u) ) u,(u) ] uj(s) 

+ .-. (2.2) 
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Instead of using (2.1) yet again for expressing x(u), we will approximate it 
by x(0). Then the following terms involving the noise term t/j(s) appear: 

W,(h ) = f~' ds ~i(s) 

Co-(h) = ds W,(s) ~j(s) 

(2.3) 

F,(h) = ds W,(s) 

au(h) = ds W,(s) Wj(s) 

The order of the terms in (2.3) can be easily determined by a dimensional 
argument. The dimension of r/is sec 1/2 and therefore we have 

W:(h) = 0(hl/2), Co.(h ) = O(h) 
(2.4) 

F,(h) = 0(h3/2), Go(h ) = O(h 2) 

Furthermore, if x ~ is dimensionless, we get 

[ f f ]  = see 1, [a  'j] = sec 1/2 (2.5) 

With the notation of (2.3) and the abbreviations 

f i  := f i(x(O)) ' a ij := aiJ(x(O)) (2.6) 

we obtain from (2.2) the expansion 

x'(h) = x'(O) + a~ + hff  + f f  .~a~lFl(h) 

"-I- lfiklakmat'~Gmn(h ) "-1- lhZfi, k f k  + O(h 5/2) (2.7a) 

in the case of additive noise (where derivatives of a ~ are zero) and 

M(h) = xi(O) + aiJWj(h) + hff + a~ + O(h 3/2) (2.7b) 

in the multiplicative case. 
Equations (2.7a) and (2.7b) are the basis of all further considerations 

and we will see that higher expansions in h are not necessary from a 
practical point of view. Because Wi(h) and F~(h) are linear functionals of 
q~(s), they are also Gaussian random numbers. In the following the first 
and second moments of the quantities in (2.3) are needed. They can easily 
be calculated; we obtain 
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and 

< Wi(h) > = O, 

< C~j(h) > =0, 

<F~(h)> =0, 

< 6~/(h) > = �89 U, 

< W~(h) Wj(h) > = h,~ 

<C~(h) Ckl(h) > = lh2(~ik~j l  

<F~(h) Fj(h) > - 'h36 - - 3  /j 

<G~(h) Gkj(h)> = O(h 4) 

< W~(h) Qk(h)> =0  

(W~(h) Fj(h ) > = �89 

(2.8) 

(2.9) 

3. CONVERGENCE IN THE M E A N  SQUARE L IMIT  A N D  
OF THE M O M E N T S  

In a numerical method an expansion like (2.7a) or (2.7b) is 
approximated by a polynomial in h U2. For a deterministic differential 
equation the order of this polynomial can be chosen as high as one likes in 
order to obtain a corresponding accuracy within one time step. In the 
expansions (2.7a) and (2.7b) for stochastic differential equations, however, 
there appear nonlinear functionals (e.g., Cij and Go ) of the white noise. The 
simulation of these quantities is not known or may be prohibitively expen- 
sive. Therefore the aim cannot be to invent a method that is very accurate 
for one time step. Confined to algorithms of relatively low order, one will 
be forced to calculate the quantities of interest for various time steps and 
then extrapolate to time step zero. With this in mind one should find the 
algorithm that is simplest for calculating the quantities for finite time steps 
and for the extrapolation as well. 

The convergence in the mean square limit will be measured by the 
behavior of 

R(h) = ([xi(h)  - ffi(h) ] 2 > (3.1) 

for h --* 0, where ff~(h) is an approximation of the full expansion (2.7a) or 
(2.7b) by a numerical algorithm. If R(h) --* 0 holds for h ~ 0, then one calls 
such a method "convergent in the mean square limit. ''(13) The quality of the 
convergence in the mean square limit plays a major role in problems where 
one has to look at the trajectory itself; for example, the simulation of the 
mean first passage time, the distribution of extrema, and also if the system 
(1.1) is confined by reflecting barriers. 

This convergence in the mean square limit has to be distinguished 
from the convergence for the moments. If one writes 

x~(h) = Di(h) + S'(h) (3.2) 
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where Dr(h) contains the deterministic terms of the right-hand side of 
(2.7a) or (2.7b) and S~(h) the stochastic ones, then one gets 

< [x i (h) ] "> = < [Dr(h) + Si(h)]"> = [De(h) ] "  + n[Dr(h)]  ~ l<Si(h)> 

+(n~[D~(h)]"  2<[S ' (h ) ]2>+- . -  (3.3) 
2z /  

With 

Si(h) = a~Wj(h) + ~r + f~.~aktFt(h) 
1 i km lm +~f ,k ta  a Gm~(h ) (3.4) 

one obtains with (2.8) and (2.9) 

<Si(h)> 1,_2 ~c.i km lm-- = zn J,klff 6 -t- O(h 3, h 2) 

( Si(h) SY(h) ) = hai~rJ k - lhz,~ik,,tkCj 
~ , ~  v ~ J , l  

l Ia2,..ejktvlk ( i  • -~- 2 . . . .  J , l  T O(h 3, h 2) 

< s'(h) sJ(h) s~(h) > = o(h 3, h 2) 
< [ S i ( h ) ]  4 )  = 3 h 2 ( c r 6 )  4 q- O(h 3, h 2) 

< [Si(h)] 5 ) = O(h 3, h 2) 

(3.5) 

where we have neglected all terms O(h 3) in the additive case and O(h 2) in 
the multiplicative case and (a,j)4 stands for a specific product of four ao. 
The D~(h) always contains a term O(h~ An algorithm with 

f;i(h) -.= O ' ( h )  + S i (h)  (3.6) 

leads to 

< [2~(h)]" > = < [/5~(h) + g~(h)]" ) = [ /5 i (h) ] "  + n [ / ~ ' ( h ) ] " -  l <o~(h) > 

+ ( n ~  [/3'(h)]" 2< [S ' (h ) ]2>+- . -  (3.7) 
2z /  

If the expansions (3.3) and (3.7) coincide up to terms h 2, D~(h) and/)r(h)  
should as well, and ( [Si(h)]  ~) (n=  1, 2,...) should give rise to the same 
terms up to order h 2 as written in (3.5). 

If all moments are approximated with a specific order of convergence, 
this is also true for every expectation value m = { g(x ~) > of a function of 
the process. 
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4. THE V A R I O U S  M E T H O D S  

In this section the simplest methods are discussed. Their convergence 
in the mean square limit and of the moments is determined. The optimal 
strategy for generating suitable random numbers is also given. 

4.1. The Euler M e t h o d  

The Euler method is defined by 

s = x~(O) + f f ( x (O) )h  + a~/(x(O)) Wj(h) (4.1a) 

i.e., 

D'(h) = x'(O) + f fh ,  Si(h) = 6iJWi(h) 

One immediately concludes from (2.7a), (2.8), and (4.1a) that 

R(h) = ( [ x i ( h )  - ~ ' ( h ) ]  2 ) = O ( h  3) 

in the additive noise case, but 

(4.1b) 

(4.2) 

( I-x'(h)]" > = ( I-x'(h)]" ) + O(h ~) (4.4) 

because the only term of order h in ( [ S i ( h ) ]  n) (n = 1, 2,...), namely the 
term in (S t (h )  SJ(h)), 

( Si(h ) SJ(h ) ) = ( [ a i k W k ( h )  -t- "" "] [aJiWl(n) + . . . ]  ) 

= aikaJ~h (4.5) 

is reproduced by gi(h). 
An integration over a finite time interval (0, t~) will involve N time 

steps, where N ~ 1/h. Hence, the error accumulated during the time interval 
is one order less than the one-time-step error. In conclusion, for the Euler 
method the convergence of the moments for a finite time interval (0, tl) is 

for multiplicative noise, because now the term with the functional Co(h ) 
has to be taken into account. The integration over a finite time interval 
(0, tl) yields a total error R(t )  = O(h 2) for additive noise and R(t)  = O(h) 
for multiplicative noise.(tl) 

For the moments we obtain 

R(h)  = O(h 2) (4.3) 
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of the order h, and this is true for the additive case and for the mul- 
tiplicative case as well. 

All of the methods introduced in this section need random numbers 
that are functionals of the Wiener process, especially Wi(h). The correct 
numerical simulation of Wi(h) could be done by taking uncorrelated, 
Gaussian-distributed random numbers with variance h. Such a method is, 
for example, the Box-Muller algorithm, (14) but this one needs for every two 
random numbers a logarithm and a square root. However, one can 
immediately see from (4.5) that when treating moments with the Euler 
algorithm it is sufficient to take an arbitrary random variable ff/i(h) where 
only the first three moments are correct 

< gZi(h) > =0 

< Wi(h) ~/j(h)) = ~uh (4.6) 

(lTV,(h) ~Vj(h) Wk(h)) = 0  

without getting a worse order of convergence. Taking random numbers R 
that are uniformly distributed on the interval (0, 1) (which are normally 
produced by a random number generator implemented on a computer), 
one can get such simple random numbers l~(h)  through 

ITVi(h) = (12hll/2(R - 0.5) (4.7) 

In comparison with taking Gaussian random numbers, this saves a great 
deal of computing time, although this has no influence on the order of 
convergence. 

4.2 .  T h e  M i l s h t e i n  M e t h o d  (6'7) 

To get a O(h 3) convergence of R(h) in the multiplicative case one has 
to simulate Cu(h) correctly. In the univariate case the functional C(h) can 
be calculated immediately in order to get 

C(h) = ds W(s) q(s) = �89 WZ(h) - h] (4.8) 

Therefore the Milshtein method can be formulated (unfortunately in the 
univariate case only) 

2(h) = x(O) + f ( x ( O ) ) h  - �89 ~(x(O))h 

+ a(x(0)) W(h) + �89 a(x(O)) W2(h) (4.9) 
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Obviously we now have in the multiplicative case as well 

R(h) = ( [ x ( h )  - 2(h)]  2 ) = O(h 3) (4.10) 

but the same convergence of the moments as for the Euler method in (4.4). 
This method is often used in the literature (4'1s) as a higher order method,  
but this is only true for the convergence in the mean square limit. 

4.3. The  Heun  M e t h o d  

We want to discuss the Heun method only explicitly for the case of 
additive noise. This method is defined as 

~(h)=x~(O)+�89 fi(~(h))]h+aoWj(h) (4.11a) 

with 

~'(h) = xi(O) + f'(x(O))h + a~ (4.11b) 

Expanding the term ff(~(h)), one gets 

2~(h)=x,(O)+ f~h+aoWj(h) 1 ~ + ~f .kh[f~h + ak~W,(h)] 
1 i k + g f  .klh[f h + ak~Wm(h)][flh + at"W.(h)] 

= xi(O) +f ih  + a~ + �89 k~rktWt(h) 

I h 2  t,'i ['k 1 i km In + ~,, J , k J  + 3hf,k,a a Wm(h) W,(h) + O(h 5/2) (4.12) 

is exactly formula (2.7a), where the terms Ft(h ) and Gmn(h ) are 
the same first 

This 
replaced by simpler (local) expressions in W(h) with 
moment, namely 

Fl(h ) by Ft(h) = 1Wt(h)h 
(4.13) 

Gmn(h) by Gmn(h)=lhWm(h) Wn(h) 

But the higher moments are not equal, 

(Pi(h)~(h))=(Pi(h)Fi(h))=�88 [r (4.14) 

However, 

( W i ( h  ) F j ( h ) )  = ( W i ( h  ) Fj(h)) = �89 (4.15) 

Hence we have 

R(h) = ( {aktf~k(F,(h ) - P,(h)) 
1 km In G ' - +~0" O" [ m n ( h ) - G m n ( h ) ] } 2 ) - l - O ( h  4) 

= O(h 3) (4.16) 
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Therefore, the convergence in the mean square sense is of the same order as 
in the Euler method. But looking at the convergence of the moments, we 
now obtain 

D~(h)= x~(O) + f~h + ~h 2,f ~,kf k 

--" 1 i k m  In S'(h) = ~uWj(h) + fik~rklpl(h ) + ~ f  ,~l~ a Gm,(h ) 

and therefore 

(4.17) 

<Si(h)> =1 2 i k m  lm 3 ~h'f  ,kt~ a + O(h ) 

< g ' (h )  ~J(h) > = ,,~,Z'"'k"Jk~ .• ~"ll'2~'k~tk C j v  ~, j , ~  

~ -  l la2 . . - r jk~ ' lkr  m O(h 3) 
~ , ,  u v j , l  m 

< ~'(h) oeJ(h) oe~(h) > = O(h ~) 
< [-S/(h)]4> = 3 h 2 ( ( T i J )  4 -~  O(h 3) 

(4.18) 

which are equal up to the order h 2 with the moments ( [S i (h ) ]  " )  
(n = 1,..., 4). Since also /5~(h) coincides with D~(h) up to the order h z, the 
Heun method converges as 

< [ x ' ( h ) ] "  > - < [ ~ i ( h ) l -  ) = o(h 3) 

and for a finite time step 

< [x'(t)]" > - < [ ~ ' ( t ) ] "  > = O(h ~) 

(4.19a) 

(4.19b) 

To obtain (4.18), we have used that also the fourth and fifth moments 
of Wi(h) are Gaussian 

( [ W ~ ( h ) ] 4 >  = 3h 2 , <[W,(h)]5>=O (4.20) 

This cannot only be achieved by true Gaussian random numbers, but for 
example also by 

- (3h) 1/2 if R < 1/6 

Wg(h)-- 0 if 1 /6~<R<5/6 
+ (3h) 1/2 if 5/6 ~< R 

(4.21) 

where R is a uniformly distributed random number on the interval (0, 1). 
In the multiplicative case the Heun method only has the same order of 

convergence in the mean square limit and. of the moments as the simpler 
Euler method. 
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4.4. Other  M e t h o d s  

The Euler and Heun methods are in the deterministic case the lowest 
versions of the more general Runge-Kutta algorithms. However, taking a 
higher order Runge-Kutta scheme and simply adding a Gaussian random 
number does not lead to any reasonable stochastic algorithm, because this 
does not take care of the functionals C~, Fi ..... Therefore, one gets only the 
convergence already achieved by the Euler and Heun methods. 

No method has in the multivariate and multiplicative case an error in 
the mean square limit as R(t) = O(h2), because it is not possible to simulate 
the functional C~(h) correctly in this case. One possibility to improve the 
convergence behavior is to take weakly colored noise instead of white noise 
and then extrapolate to the white noise case. This can be done, e.g., by 

Yci= f i (x )  + ~J(x) zj(t) (4.22a) 

where zj(t) is some colored noise from an Ornstein-Uhlenbeck process 

~j(t) = (l/z)[- -z~(t)  + r/j(t)] (4.22b) 

Equations (4.22a) and (4.22b) together are a 2N-dimensional stochastic 
differential equation with additive noise. This one can be treated with one 
of the above methods (preferably the Euler method), having now also a 
convergence in the mean square limit as R(t) = O(h=). This phenomena was 
already observed by Fox eta/ .  (4) (see their Figs. 13 and 15). One should 
note that the stochastic differential equation (4.22b) converges in the limit 
of white noise ( ~ 0 )  to its Stratonovich interpretation, which can, 
however, easily be transferred into the Ito form. 

For  the other situations (additive or univariate multiplicative noise) 
there are also no methods with a better order of convergence in the mean 
square limit than the one obtained already by the methods introduced 
above (except in some very special cases) because of the nonlinear 
functionals F~(h), G~j(h) ..... which also cannot be numerically simulated. I11) 

The limits for the convergence of the moments are not so strict, 
because one needs only some properties about the moments of the 
functionals C~(h), G,j(h),...; it may be possible to formulate higher order 
methods. An example of such an algorithm was introduced by Klauder and 
Petersen, ~ but this rather complicated method converges better only for 
the first two moments in the multiplicative case. However, we suppose that 
the expense in taking a higher order algorithm is not worthwhile, especially 
if one keeps in mind that one always gets a statistical error from the finite 
number of realizations and one has to extrapolate to h --* 0 anyhow. If one 
is only interested in moments of the process, it is not necessary to use 
colored noise. 
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5. PRACTICAL CONSEQUENCES 

5.1. Discussing of the Errors 

Treating stochastic differential equations by numerical methods, one 
will have two major  contributions to the error, namely a statistical one due 
to the finite number of realizations and another one from the time 
discretization. The statistical error can be estimated as follows: Let N be 
the number of realizations and M (~ the result of the ith simulation. Then 
the average over all realizations, 

1 
i M(i) (5.1) 

m - - - N i = l  

is an estimation for the desired result. But m as well as M (~ are stochastic 
variables with a specific distribution. As is well known, the nth cumulants 
of the m-distribution and the M-distribution are related by 

1 
tcn(m ) = ~ t%(M) (5.2) 

The moments  

1 u 
( M(i)) k (5.3) (M k) = ~  

n = l  

we need for calculating these can easily be calculated at the same time with 
m = ( M ) .  In most cases the higher cumulants ~%(m) (n > 2) will come out 
to be very small because of the factors N in the denominator  in (5.2), and 
the m-distribution is Gaussian to a very good approximation.  We therefore 
need to specify it only by its width •2(m), and denoting the interval 

(m -- [K2(m) 3 1/2, m + [K2(m) ] 1/2) (5.4) 

t 
as the result of the simulation, meaning that the exact value lies with 
probability 0.68 within this range. 

The error due to the time discretization cannot be estimated by one 
simulation alone. One has to make simulations at different time steps in 
order to get an idea about  this error. Since one knows from the above 
calculations the order of the convergence of the method chosen, one is able 
to fit an appropriate  curve through the simulation results for the different 
time steps and to extrapolate to h =0 .  The benefit of this procedure is 
mostly that one can control and nearly eliminate the error occurring from 
the time discretization. Furthermore,  one may choose greater time steps. 
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Our experience shows that one can save a factor 2-5 of computing time, 
while obtaining a more reliable result than by simulating only once with a 
smaller time step and taking this result as the final one. 

Summarizing, the following numerical strategy will be the most 
efficient one: Choosing a method with a known convergence behavior, one 
performs simulations with different (not to small) time steps h. Then one 
fits a polynomial of appropriate  order to the results, which is a well known 
procedure. (16) For  the above methods this polynomial is of the form 

f ( h ) = a o  + a lh  (5.5a) 

o r  

f ( h )  = ao + a2h 2 (5.5b) 

If some time steps are too great, only a relatively bad fit through the points 
with error bars is possible. Then the results for the greater time steps 
should be discarded in order to get a better fit. 

The value of ao and its error may be declared as the result 
extrapolated to time step h = 0. 

5.2. An Example  

The strategy presented in the previous section will now be 
demonstrated with a simple example, the stochastic G i n z b u r ~ L a n d a u  
equation 

2 = c~x-  x 3 + axtl(t) (Stratonovich interpretation) 
(5.6) 

3~ = (0~ -t- 1 0 " 2 ) X  - -  X 3 -[- axq(t)  (Ito interpretation) 

with a parameter  ~.(15) 
The aim of our simulation was the determination of the second 

moment  at t = 5 when starting at x ( 0 ) =  1 with the parameters c~ = a = 2. 
The simulation was done with N =  100,000 realizations and different time 
steps. We used the Euler method, the Milshtein method, the Heun method 
(though not discussed for the multiplicative case), and the method 
proposed by Klauder and Petersen/12~ The latter has difficulties arising 
from the natural boundary of the system at x = 0 and did not yield any 
useful result. The results of the other three methods are shown in Fig. 1. 
One clearly sees the linear order of convergence of all three methods and 
one also observes that the results at the smallest time step (h = 0.01) are 
still four to eight standard deviations from the exact value. Therefore a 
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Fig. 1. The numerical simulation of the stochastic Ginzburg-Landau equation obtained 
from N = 100,000 realizations with the Euler, Milshtein, and Heun methods. 

linear extrapolation is necessary. With such an extrapolation we get the 
following results: 

(x~(t=5)) 

Euler method 

Milshtein method 

Heun method 

2.048 _+ 0.012 

2.064 _ 0.013 

2.046 _+ 0.012 

(5.7) 

All three results are compatible. We can also conclude from our results that 
the second moment at t =  5 is significantly above the stationary value, 
which is 

( X 2 ) s t a t  =- 0~ = 2 (5 .8)  

For this example the Euler method is the appropriate one because the 
other methods need more computing time and do not yield any better 
result. 

An example where the convergence of the trajectories (convergence in 
the mean square limit) is the major problem occurs when treating mean 
first passage time problems numerically. With normal methods one gets 
only a convergence as  O(hl/2). This is treated in a forthcoming article, ~lv) 
where it is also shown how to overcome this bad order of convergence. 
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6. CONCLUSIONS 

T h e  c o n s i d e r a t i o n s  of  this  p a p e r  s h o w  tha t  s tochas t i c  dif ferent ia l  

e q u a t i o n s  need  a m o r e  soph i s t i ca t ed  n u m e r i c a l  t r e a t m e n t  t h a n  do  deter -  

min i s t i c  ones.  Bu t  by  t a k i n g  the  p r o p o s e d  s t ra tegy,  one  is ab le  to get  

sa t i s fac to ry  resul ts  in m o d e r a t e  c o m p u t i n g  t ime. T h e  m a i n  r e q u i r e m e n t  is 

tha t  one  k n o w s  the  c o n v e r g e n c e  o r d e r  of  t he  chosen  m e t h o d  a n d  uses this 

to  e x t r a p o l a t e  to h = 0, e l i m i n a t i n g  the  e r r o r  due  to  the  t ime  d iscre t iza t ion .  
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